шјес cbac

GCSE MARKING SCHEME

MATHEMATICS - LINEAR NOVEMBER 2015

INTRODUCTION

The marking schemes which follow were those used by WJEC for the November 2015 examination in GCSE MATHEMATICS - LINEAR. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

PAPER 1 - FOUNDATION TIER

\begin{tabular}{|c|c|c|}
\hline 2015 November Paper 1 (Non calculator) Foundation Tier \& Marks \& FINAL MARK SCHEME Comments \\
\hline \begin{tabular}{l}
1. (a) (i) 2031004 \\
(ii) eighty one thousand three hundred and five \\
(b) (i) 24 and 36 \\
(ii) 46 and 18 \\
(iii) 63 \\
(c) (i) 4520 \\
(ii) 5000 \\
(d) \(1,3,5,15\) \\
(e) (i) 2567 \\
(ii) 7625
\end{tabular} \& \begin{tabular}{l}
B1 \\
B2 \\
B1 \\
B1 \\
11
\end{tabular} \& \begin{tabular}{l}
Accept embedded answers, e.g. \(46-18=28\). \\
B1 for any 3 correct factors and up to 1 incorrect OR B1 for 4 correct factors and 1 extra incorrect given. Accept \(1 \times 15,3 \times 5\). Ignore repeats. \\
Accept 2,5,6,7 B0 for 2.567
\end{tabular} \\
\hline \begin{tabular}{l}
2. (a) (i) 47 \\
(ii) 1 \\
(b) e.g. \(54 * *\) OR \(64 * *\) etc \\
(c)
\[
\begin{aligned}
\& 3 / 25=(0) \cdot 12 \\
\& 13 \%=(0) \cdot 13 \\
\& (0) \cdot 12,(0) \cdot 13,(0) \cdot 2
\end{aligned}
\] \\
(d)
\[
\begin{aligned}
\& 300 \div 5,305 \div 5,303 \div 5 \quad(\text { Must be } \div 5) \\
\& =60, \quad 61, \quad 60.6
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
B2 \\
B1 \\
B1 \\
B1 \\
M1 \\
A1 \\
9
\end{tabular} \& \begin{tabular}{l}
OR in words \\
Any number \(>5000\) with 4 in the hundreds column B1 for any number with hundreds digit of 4 . \\
Correct answer OR F.T their decimal values. Accept \(3 / 25,13 \%\), (0) \(\cdot 2\) or equivalent. \\
F.T their estimates for simple calculations. SC1 for unsupported 60 only. \\
Penalise extra working (towards actual answer) M0,A0. B0 for \(\mathbf{6 0} \times \mathbf{5}=\mathbf{3 0 0}\)
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { 3. } \begin{aligned}
(\text { Hours worked }=) \& 8 \times 45 \text { (minutes) OR } 8 \times 3 / 4 \text { (hours) } \\
= \& 360 \text { (minutes) OR }=6 \text { (hours) } \\
\text { Charge }=(£) 30 \times 6 \& +(£) 65 \\
\& =(£) 245
\end{aligned}
\end{aligned}
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
\] \& \begin{tabular}{l|l}
\\
\begin{tabular}{l}
Conversion to 'hours' not required \\
at this stage.
\end{tabular} \& \begin{tabular}{l}
Special cases \\
SC1 for (£)305 \\
(from \(8 \times 30+65)\)
\end{tabular} \\
\begin{tabular}{l}
F.T. 'their time' but there must be \\
an attempt to convert to hours.
\end{tabular} \& \begin{tabular}{l}
SC1 for (£)700 \\
(from \(8 \times £ 87.50)\).
\end{tabular}
\end{tabular} \\
\hline \begin{tabular}{l}
Look for (in the most part) \\
Strand 1: For 1 mark \\
Candidates will be expected to \\
- present their response in a structured way \\
- explain to the reader what they are doing at each step of their response \\
- lay out their explanations and working in a way that is clear and logical \\
- write a conclusion that draws together their results and explains what their answer means \\
Strand 2: For 1 mark \\
Candidates will be expected to \\
- show all their working \\
- make few, if any, errors in spelling, punctuation and grammar \\
- use correct mathematical form in their working \\
- use appropriate terminology, units, etc
\end{tabular} \& QWC
2

6 \& | QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. |
| :--- |
| QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar |
| OR |
| evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. |
| QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar |

\hline	4. (a) certain	sicr
(b) an even chance	siawns deg	
(c) impossible	amhosibl	
(d) unlikely	annhebygol	\& \[

$$
\begin{gathered}
\hline \text { B1 } \\
4
\end{gathered}
$$
\] \&

\hline
\end{tabular}

2015 November Paper 1 (Non calculator) Foundation Tier	Marks	FINAL MARK SCHEME Comments
5. (a) $3 x$ (b) $(\mathrm{P}=) 11$ (c) $y=x+3$ (d) $(\mathrm{i})(\mathrm{y}=) 8$ (ii) $(x=) 15$ (e) even (number)	B1 B2 B2 B1 B1 B1 8	B1 for either 35 OR -24 . Watch out for 4+7=11 gets B0 B1 for 11P. B 0 for 35 A and/or -24 B OR $\mathrm{P}=35 \mathrm{~A}-24 \mathrm{~B}$. B 2 for equivalent in words, e.g. ' x is 3 smaller than y '. B1 for +3 , add 3, you add 3 etc. Accept embedded answers such as $3 \times 8=24$. $\boldsymbol{B 0}$ for $\mathbf{y}=\mathbf{2 4}$ Accept embedded answers such as $15-4=11$. B0 for $\mathbf{x}=\mathbf{1 1}$ Allow 'two times table' or 'multiples of two' or 'double(s)' or 'double number'. B 0 for 'double digit'.
6. A(2, 1), B ($-3,-5$) and $\mathrm{C}(4,-3)$.	$\begin{gathered} \hline \text { B3 } \\ 3 \\ \hline \end{gathered}$	B1 for each. Reversed coordinates get B0 every time. Letters A,B,C not needed as long as the point is identified.
7. (a) $\begin{aligned} \text { Total length } & =3300(\mathrm{~mm}) \\ & =3.3 \text { (metres }) \end{aligned}$ (b) For adding cupboard lengths to get $\mathbf{3 7 0 0}, \mathbf{3 8 0 0}$ or $\begin{aligned} & \underline{\mathbf{3 9 0 0}} \\ & \text { e.g. } 1000,1000,1000,900 \\ & \quad 1200,1200,1200,300 \mathrm{etc} \end{aligned}$ Reason, e.g. 'cannot fill the 30 mm ', or 'all units are multiples of 100 '	B1 B1 S1 B1 B1 E1 6	Look in the diagram also. If units changed, e.g. to cm , then the units must be stated. F.T. 'their 3300 '/1000. Accept $3 \mathrm{~m} \mathrm{300mm}$ and $3 \mathrm{~m} \mathrm{30cm}$. For adding cupboard lengths to get 3900 For adding different cupboard lengths to get 3900 630 mm : Some candidates are using part (a) and considering the extra 630 mm . Allow all marks as deserved as long as they use the lengths given in part (a).
8. (a) (i) Area $=35 \times 41$ $=1435\left(\mathrm{~m}^{2}\right)$ (ii) $\underline{\mathbf{1 4 3} \text { (turkeys) }}$ (from $1435 / 10=143.5$) (b) Missing sides $=25,34$ Perimeter $=64+45+34+25+30+20$ OR Perimeter $=2 \times(64+45)$ $=218(\mathrm{~m})$ Enough fencing with 32 m left over	M1 A1 B1 S1 M1 A1 B1 7	F.T. 'their 1435' provided rounding down is involved, i.e. equivalent level of difficulty. For either 25 or 34. Award M1 for adding the given 64, 45,20, 30 and their two values for the missing sides. Gets the S1 and M1 C.A.O. F.T. 250 - 'their 218'
9. (a) Number of small beads in necklace $=3 / 5$ of 150 , or Number of large beads in necklace $=2 / 5$ of 150 , or equivalent, e.g. with 30ths Number of small beads $=90$ Number of large beads $=60$ (b) $\begin{aligned} & \text { Bracelet costs } 80+18 \times 5+12 \times 10(\mathrm{p}) \\ &=£ 2.90(\text { each) OR } £ 290 \text { for } 100 \\ & \text { Profit }=70 / 100 \times £ 2.90 \underline{(\times \mathbf{1 0 0})} \\ &=£ 2.03 \text { per bracelet } \mathbf{O R} £ 203 \text { for } 100 \\ & 100 \text { bracelets will cost } £ 493 \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \\ \text { A1 } \\ \text { A1 } \\ \\ \\ \text { M2 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ 9 \\ \hline \end{gathered}$	OR Number of small beads in necklace $=18 \times 5$, or Number of large beads in necklace $=12 \times 5$, or equivalent M1 for any 2 of these terms added together C.A.O. F.T. 70% of 'their£2.90' even if it is $£ 80$ or 80 p F.T. dependent on at least M1 (out of M2) and M1.
10. (a) $13 \cdot 6$ (cm) 13.6×5 $=68(\mathrm{~km})$ (b) Use Overlay Bearing 136° from A Bearing 219° from B Point (M)	B1 M1 A1 M1 M1 A1 6	Allow $13 \cdot 4-13 \cdot 8$ inclusive (ignore km here) FT 'their $13 \cdot 6$ ' $\times 5$ but M1,A0 for whole number $\times 5$ km not required but A0 for incorrect units. Unsupported answers within 67-69 inclusive get B1,M1,A1. Unsupported answers outside 67-69 inclusive get 0 . Allow $\pm 2^{\circ}$ Allow $\pm 2^{\circ}$ F.T. if at least M1 awarded. Unambiguous dots within the boundaries of the overlay can get the M1s. One unambiguous dot within the 'box' gets all 3 marks. Watch out for line segments. An unambiguous point of intersection does not require M.

2015 November Paper 1 (Non calculator) Foundation Tier	Marks	FINAL MARK SCHEME Comments
11. (a) $\begin{gathered} (\mathrm{x}=) 180-90-33\left({ }^{\circ}\right) \frac{\text { OR } \mathbf{9 0}-\mathbf{3 3}\left({ }^{\circ}\right)}{=57\left(^{\circ}\right)} \end{gathered}$ (b) $\begin{aligned} & \angle \mathrm{D}=114 \\ & \quad \mathrm{y}=180-114-27 \quad\left({ }^{\circ}\right) \\ & \quad=39\left({ }^{\circ}\right) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ 5 \end{gathered}$	Look in the diagram also. $\begin{aligned} & \text { General principle: } \\ & \hline 141-180=39 \text { gets M1,A1 } \\ & 141-180 \neq 39 \text { gets M0,A0 } \end{aligned}$
12. $\begin{gathered} 8 x-5 x=21+9 \\ 3 x=30 \\ x=10 \end{gathered}$ H1(a)	B1 B1 B1 3	FT until $2^{\text {nd }}$ error OR $\mathrm{x}=30 / 3$ Must be simplified Accept an embedded answer of 10 If no marks, allow $1^{\text {st }}$ B1 only for sight of $3 x$ and 30 (no ${ }^{\prime}={ }^{\prime}$).
13. $\left(\frac{1}{5}+\frac{3}{8}\right)$ Sight of, or implied $\frac{8}{40}(+) \frac{15}{40}$ or $\mathrm{x} / 5+3 \mathrm{x} / 8+34=\mathrm{x}$	B1	If an algebraic method is used, FT until $2^{\text {nd }}$ error Or equivalent, e.g. 16/80 (+) 30/80 If an algebraic method is used, only FT from B0 here if at least 3 of the terms are correct and it is then of equivalent difficulty
(Canada and Japan) $\frac{23}{40}$ OR (Wales) $1-\left(\frac{1}{5}+\frac{3}{8}\right)$ or $8 \mathrm{x}+15 \mathrm{x}+1360=40 \mathrm{x}$ or $23 \mathrm{x} / 40(+34=\mathrm{x})$	B1	Or equivalents (46/80) FT 'their $8 / 40+15 / 40$ ' provided at least one of the fractions with common denominator is correct and addition of 'their fractions' is correct
(Wales) $\frac{17}{40}$ or equivalent $\begin{aligned} \text { or } \quad 1360 & =40 x-8 x-15 x \\ \text { or } 23 x+1360 & =40 x \quad \text { or } \quad 23 x / 40+34=x \end{aligned}$	B1	Sight of $17 / 40$ or $34 / 80$ implies all previous B marks FT 'their 1- 'their $8 / 40+15 / 40$ ' provided previous B1 awarded
$17 / 40$ is equivalent to 34 or $34 \times 40 \div 17$ or $17 \mathrm{x}=1360 \quad$ or $17 \mathrm{x} / 40=34$ or equivalent	M1	Or alternative suitable strategy or method FT 'their 1- 'their $8 / 40+15 / 40$ ' is equivalent to 34 provided previous B1 awarded
(Idris has) 80 (relatives)	A1	CAO
H3		
14. $1-\frac{1}{6} \times \frac{1}{6}$ or equivalent full method	M1	
$35 / 36$	A1	Mark final answer
15. Use of area $=1 / 2$ base \times height, e.g. $12=1 / 2 \times x \times 6$ ($\mathrm{x}=$) 4 (metres) Area trapezium is $1 / 2 \times x \times(6+14)$	M1	Accept written informally but must include relevant values
	A1	
	M1	Must show substitution for x .
$40\left(\mathrm{~m}^{2}\right)$	A1	FT substitution of 'their derived x ', or unsupported 4 (m) Do not FT from a spurious measurement for x, only FT if working is seen to derive x
		Alternative for area of the trapezium, with diagonal splitting into 2 triangles, with the same height, areas of these triangles are $12 m^{2}$ and $12 \times 14 / 6=28 m^{2}$
H5	4	
16. (a) 2, 14, 36	B2	Ignore any subsequent values given B1 for 2 correct terms in the correct position SC1 for 0, 2, 14 or ..., 2, 14, 36
(b) -320	B1	
H9(a)(b)	3	

2015 November Paper 1 (Non calculator) Foundation Tier	Marks	FINAL MARK SCHEME Comments		
17.		Ignore incorrect cancelling in final answers throughout. Penalise incorrect notation -1 once throughout this question.		
(a) $71 / 392$	B1	B1		
(b) $138 / 392$	B2	B1 for a numerator of 28 or a denominator of 138.	B2	B1 for a numerator of 45 or a denominator of 103.
:---		(c) $28 / 138$		
:---				
(d) $45 / 103$				
(e) $213 / 271$				
B3				

PAPER 1 - HIGHER TIER

\begin{tabular}{|c|c|c|}
\hline Linear GCSE Mathematics Higher Tier November 2015 Paper 1 \& \& FINAL MARK SCHEME Comments \\
\hline \begin{tabular}{l}
1(a)
\[
\begin{gathered}
8 \mathrm{x}-5 \mathrm{x}=21+9 \\
3 \mathrm{x}=30 \\
\mathrm{x}=10
\end{gathered}
\] \\
(b) \(-4 \mathrm{e}(+)-5 \mathrm{f}\) \\
(c) \((\mathrm{x}=) 98\)
\end{tabular} \& B1
B1
B1

B2

B1

6 \& | FT until $2^{\text {nd }}$ error |
| :--- |
| OR x = 30/3 |
| Must be simplified |
| Accept an embedded answer of 10 |
| If no marks, allow $1^{\text {st }}$ B1 only for sight of $3 x$ and 30 (no ' $=’$). |
| Must be an expression. Mark final answer. |
| B1 for either -4e or -5f |
| Not for 7×14, must be evaluated |

\hline 2. $1-1 / 6 \times 1 / 6$ or equivalent full method $35 / 36$ \& M1
A1
2 \& Mark final answer

\hline | 3. |
| :--- |
| Sight of, or implied 8/40 (+) 15/40 or $x / 5+3 x / 8+34=x$ | \& B1 \& | If an algebraic method is used, FT until $2^{\text {nd }}$ error |
| :--- |
| Or equivalent, e.g. 16/80 (+) 30/80 |
| If an algebraic method is used, only FT from B0 here if at least 3 of the terms are correct and it is then of equivalent difficulty |

\hline (Canada and Japan) 23/40 or (Wales) $1-(1 / 5+3 / 8)$ or $8 x+15 x+1360=40 x$ or $23 x / 40(+34=x)$ \& B1 \& | Or equivalents (46/80) |
| :--- |
| FT 'their $8 / 40+15 / 40$ ' provided at least one of the fractions with common denominator is correct and addition of 'their fractions' is correct |

\hline | (Wales) $17 / 40$
 or $23 x+1360=40 x$ | or | $1360=40 x-8 x-15 x$ |
| :--- | :--- | :--- |
| or equivalent | | $23 x / 40+34=x$ | \& B1 \& Sight of $17 / 40$ or $34 / 80$ implies all previous B marks FT 'their 1- 'their $8 / 40+15 / 40$ ' provided previous B1 awarded

\hline | $17 / 40$ is equivalent to 34 or $34 \times 40 \div 17$ |
| :--- |
| or $17 \mathrm{x}=1360$ |
| or $17 \mathrm{x} / 40=34$ or equivalent | \& M1 \& Or alternative suitable strategy or method FT 'their 1 - 'their $8 / 40+15 / 40$ ' is equivalent to 34 provided previous B1 awarded

\hline \& A1
5 \& CAO

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Linear GCSE Mathematics Higher Tier November 2015 Paper 1 \& \& FINAL MARK SCHEME Comments \\
\hline 4. (Standing charge) \(90 \times(0)\).28
(Electricity charge) \(850 \times(0)\).14
(Total charges) \& M1
A1
M1
A1
B1 \& \begin{tabular}{l}
If units are given they must be correct. Mark final answer \\
If units are given they must be correct. Mark final answer FT provided both M marks awarded. \\
If units are given they must be correct OR FT 'their previous consistent units'
\end{tabular} \\
\hline \begin{tabular}{l}
(Total cost including VAT) \(144.2 \times 1.05\) or equivalent \\
(Total bill) \\
(£) 151.41 or 15141 (p)
\end{tabular} \& M1

A1 \& FT 'their 144.2 ' or 'their 14420 ' which must follow a sum of at least two amounts, one of which must be either $90 \times(0)$. or $850 \times(0)$.14 (i.e. at least one of previous M1s) For full method, $144.2(0) \times 0.05+144.2(0)(=7.21+144.20)$ If units are given they must be correct OR units consistent with previously stated units given

\hline | QWC2: Candidates will be expected to |
| :--- |
| - present work clearly, maybe with diagrams and words explaining process or steps |
| AND |
| - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer |
| QWC1: Candidates will be expected to |
| - present work clearly, maybe with diagrams and words explaining process or steps |
| OR |
| - make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer | \& | QWC |
| :--- |
| 2 |
| 9 | \& | QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. |
| :--- |
| QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar |
| OR |
| evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. |
| QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar. |

\hline | ```5. Use of area \(=1 / 2\) base \(\times\) height, e.g. \(12=1 / 2 \times x \times 6\) (\(\mathrm{x}=\)) 4 (metres)``` |
| :--- |
| Area trapezium is $1 / 2 \times x \times(6+14)$ $40\left(\mathrm{~m}^{2}\right)$ | \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| 4 | \& | Accept written informally but must include relevant values |
| :--- |
| Must show substitution for x . |
| FT substitution of 'their derived x ', or unsupported 4 (m) Do not FT from spurious a measurement for x , only FT if working is seen to derive x |
| Alternative for area of the trapezium, with diagonal splitting into 2 triangles, with the same height, areas of these triangles are $12 \mathrm{~m}^{2}$ and $12 \times 14 / 6=28 \mathrm{~m}^{2}$ |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Linear GCSE Mathematics Higher Tier November 2015 Paper 1 \& \& FINAL MARK SCHEME Comments \\
\hline \begin{tabular}{l}
9(a) \(2,14,36\) \\
(b) \(\quad-320\) \\
(c) \(\quad 2 n^{2}\) or equivalent (e.g. \(n^{2}+n^{2}\) or \(n^{2} \times 2\))
\end{tabular} \& \begin{tabular}{c}
B2 \\
\\
B1 \\
B2 \\
\\
5 \\
\hline
\end{tabular} \& \begin{tabular}{l}
Ignore any subsequent values given \\
B1 for 2 correct terms in the correct position \\
SC1 for 0, 2, 14 or ..., 2, 14, 36 \\
Mark final answer \\
B1 for (a) \(n^{2}(\pm \ldots)\) with a \(\neq 0\), or sight of consistent second difference 4
\end{tabular} \\
\hline \begin{tabular}{l}
10(a) \(6 x^{2}+21 x-2 x-7\)
\[
=6 x^{2}+19 x-7
\] \\
(b) \((x+3)^{8}\) \\
(c)
\[
\begin{aligned}
\& -36=k \times 9 \text { or }-36=k \times 3^{2} \text { seen or implied } \\
\& k=-4 \text { or sight of } y=-4 x^{2} \text { or equivalent } \\
\& y=-4 \times 5^{2} \quad y=-100
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
B2 \\
B1 \\
B1 \\
M1 \\
A1 \\
m1 \\
A1 \\
8
\end{tabular} \& \begin{tabular}{l}
B1 for any 3 terms correct out of 4 FT from B1 provided collection required provided equivalent difficulty, i.e. \(\mathrm{x}^{2}, \mathrm{x}\) and number terms. Mark final answer Sight of \(6 x^{2}-19 x-7\) without sight of the 2 middle terms is awarded B2, BO \\
If no marks award SC1 for an answer of \(6 x^{2}\) (...) - 7 \\
CAO. Mark final answer \\
Do not treat \(36=k \times 5^{2}\) as a misread \\
Informal notation is acceptable \\
FT their value for k provided M1 awarded
\end{tabular} \\
\hline \begin{tabular}{l}
11(a) 2 and 22 \\
(b) Any 5 correct plots \\
All 7 correct plots joined with a smooth curve \\
(c) \((-1,6)\) and \((1,2)\) \\
(d) \((x=)-2.2 \ldots\)
\end{tabular} \& B2
B1
B1
B2

B1

7

7 \& | B1 for each correct answer |
| :--- |
| FT from (a) |
| FT from (a) |
| B1 for each answer, or for sight of -1 and 1 FT from their graph |
| Must be a unique answer (although FT may lead to more than one solution, in which case all are required) FT intersection(s) with x-axis from their graph Reading tolerance to nearest small square |

\hline | 12. 4 r (aspberries) +5 b (lackcurrants) $=(\mathfrak{£}) 38$ $6 \mathrm{r}($ aspberries $)+3 \mathrm{~b}($ lackcurrants $)=(\mathfrak{£}) 39$ |
| :--- |
| Method to eliminate variable, e.g. equal coefficients First variable Substitute to find second variable |
| Second variable |
| Jen pays (£)50.5(0) | \& S1

M1
A1
m1

A1
B1

6 \& | For both equations, in symbols or words, however ' + ' and ' $=$ ' must be shown as symbols |
| :--- |
| Do not accept $4 \mathrm{~kg}+5 \mathrm{~kg}=38$ with $6 \mathrm{~kg}+3 \mathrm{~kg}=39$ |
| FT provided at least 1 equation correct, but 1 slip in the other equation |
| Allow 1 error in one term, not one with equal coefficients raspberries $r=(£) 4.5(0)$ or blackcurrants $b=(£) 4$ |
| FT their first variable |
| FT for m 1 not A 1 if 'their first variable is negative' |
| FT provided M1 and m1 awarded, for correct evaluation of 'their $5 \mathrm{r}+7 \mathrm{~b}$ ' |

\hline 13(a) $7 \mathrm{~h}=11 \mathrm{q}+3 \mathrm{p}-5 \mathrm{p}$ or $7 \mathrm{~h}=11 \mathrm{q}-2 \mathrm{p}$ or equivalent

$$
\begin{array}{lll}
h=\frac{11 q+3 p-5 p}{7} & \text { or equivalent } \\
h=\frac{11 q-2 p}{7} & \text { or } & h=\frac{2 p-11 q}{-7}
\end{array}
$$

\[
$$
\begin{array}{cc}
\text { (b) } \begin{array}{c}
\text { ef }-k f=t+d \\
f(e-k)=t+d
\end{array} & \text { OR } \quad \begin{array}{c}
-d-t=k f-e f \\
f=\frac{t+d}{e-k}
\end{array} \\
\text { OR } \begin{aligned}
-d=f(k-e)
\end{aligned} \\
\text { OR } \frac{-d-t}{k-e}=f
\end{array}
$$

\] \& | B1 |
| :--- |
| B1 |
| 6 | \& | Sight of $7 \mathrm{~h}=11 \mathrm{q}+8 \mathrm{p}$ is 1 error (then FT) FT until $2^{\text {nd }}$ error |
| :--- |
| Implies previous B2. Mark final answer |
| FT until $2^{\text {nd }}$ error |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Linear GCSE Mathematics Higher Tier November 2015 Paper 1 \& \& \begin{tabular}{l}
FINAL MARK SCHEME \\
Comments
\end{tabular} \\
\hline \begin{tabular}{l}
14(a) \(108^{\circ}\) \\
(b) \(\mathrm{ACB}=19\left({ }^{\circ}\right)\)
\end{tabular} \& B1
B3

4 \& | B 2 for $\mathrm{AOB}=38\left({ }^{\circ}\right), \mathrm{OR}$ |
| :--- |
| B1 for $\mathrm{HAO}=90\left({ }^{\circ}\right)$ AND also possible |
| B1 for indication (which may be shown as values) that AĈB is $1 / 2 \mathrm{AO} \mathrm{B}$, or $\mathrm{AO} \hat{B}$ is double ACB |
| Accept indication on the diagram or written in working space |

\hline | 15(a) 1 |
| :--- |
| (b) $1 / 4$ |
| (c) $12 \sqrt{ } 2$ | \& B1

B2

B2

5 \& | B1 for sight of $1 / 2^{2}$ or 4^{-1} or $1 / 3 \sqrt{ } 64$ or $1 / 64^{1 / 3}$ or 2^{-2} or $1 /\left({ }_{3} \sqrt{ } 8\right)^{2}$ |
| :--- |
| Mark final answer |
| B1 for sight of 288 broken down into factors e.g. 2×144, or $288 \div 2=144$, or $12 \times 12 \times 2$, or 4×72, or $288 \div 4=72$, or 2×12^{2}, or $2^{2} \times 72$, or $2^{3} \times 6^{2}$ |

\hline | 16(a) Translation horizontally to the left Correct translation AND -3 indicated on the x -axis |
| :--- |
| (b) Idea of reflection in x -axis |
| Idea of vertical translation |
| Correct transformation with +2 indicated on the y-axis | \& B1

B1
B1
B
B1

B1

5 \& | SC1 for translation horizontally to the right AND 3 indicated on the x-axis |
| :--- |
| May include an incorrect translation, but clearly there has been a reflection |
| Allow 'up' or 'down' |
| Previous B1 marks are independent of each other, but no FT |
| CAO for correct transformation |

\hline	17.	Sight of (Ben) 45/2 OR (Sara) $39 / 3$
Select and use correct average speeds:		
greatest (Ben) 22.5 AND least (Sara) 13		
	$9.5(\mathrm{~km} / \mathrm{h})$	\& B2

B1

B1
4 \& B1 for sight of (greatest distance) 45 or (least distance) 39
CAO

\hline 18. $8(3 x+1)+(5 x+9)((2 x-1)=4(2 x-1)(3 x+1)$ or $\frac{8(3 x+1)+(5 x+9)((2 x-1)}{(2 x-1)(3 x+1)}=4$ $24 x+8+10 x^{2}+18 x-5 x-9$ or equivalent $4\left(6 x^{2}-3 x+2 x-1\right)$ or $24 x^{2}-12 x+8 x-4$ or equivalent $14 x^{2}-41 x-3=0$ or equivalent

$$
(14 x+1)(x-3) \quad(=0)
$$

$$
x=-1 / 14 \text { and } x=3
$$ \& M1

M1
M1
A2

A1
A1

7 \& | For expansion of LHS or numerator brackets, ignore ' $=$...' or denominator. Independent of first M mark |
| :--- |
| Independent of first M mark |
| CAO |
| A1 for any two of $14 x^{2},-41 \mathrm{x}$ and -3 correct in a similar equation ' $=0$ ', or terms $-14 x^{2}, 41 x$ and 3 in an equivalent equation (e.g. $14 \mathrm{x}^{2}=41 \mathrm{x}+3$) |
| A1 for the expression $14 x^{2}-41 x-3$, unless ' $=$ ' reappears later or shows correct solutions, then award A2 |
| FT correct factorisation of quadratic of equivalent level of difficulty provided M3 previously awarded Allow use of quadratic formula, for this A1, need to see their substitution correct with $\mathrm{b}^{2}-4 \mathrm{ac}$ correctly simplified. |
| No marks for trial and improvement method |

\hline
\end{tabular}

PAPER 2 - FOUNDATION TIER

2015 November Paper 2 (Calculator allowed) Foundation Tier	Marks	FINAL MARK SCHEME Comments
1. (a) (148.20) 30.12 (paste) 49.92 (e paint) 58.16 (g paint) (£) 286.4(0) (b) $10 \%=28.645 \%=14.32$ OR ($0.05 \times 286.4(0)$ Discount $=(£) 14.32$ He pays (£)272.08 (c) $\begin{aligned} & \begin{array}{c\|c} \text { Cost }=(£) 1.56+(£) 2.86 & \text { OR }(£) 6-(£) 1.56 \\ +98(\mathrm{p}) & -(£) 2.86-(£ 0) .98 \\ =(£) 5.4(0) & \\ \quad \text { Change }=60(\mathrm{p}) \text { OR }(\mathfrak{£} 0) .6(0) \end{array} \end{aligned}$	B1 B1 B1 B1 M1 A1 A1 M1 A1 B1 10	F.T. their figures For any correct method for finding 5\% F.T. 'their total'. Ignore extra decimal places. F.T. 'their total - their discount' Alternative: $\begin{array}{\|cc} 0.95 \times \text { their } 286.4(0) & \text { M2 } \\ \text { He pays }(£) 272.08 & \text { Al } \end{array}$ M0, A0 if coffee used instead of tea, but B1 is possible. F.T. 'their $£ 5.40$ ', but B0 if more than $£ 6$ Accept $£(0) .60 p$ B0 for (0).60p. Unsupported (0).60p gets M0,A0,B0
2. (a) Height Weight 2 m 20 m 2 mm 2 cm Volume 3 mg 30 kg 3 kg Area $12 \mathrm{~m}^{2}$ $30 \mathrm{~cm}^{3}$ 300 ml 30 ml A $12 \mathrm{~cm}^{2}$ $12 \mathrm{~mm}^{2}$ $12 \mathrm{~cm}^{3}$ (b) Circle radius $6 \mathrm{~cm} \pm 2 \mathrm{~mm}$ Diameter drawn Too long B0 No labels B0 If right hand diagram is labelled correctly e.g. diameter and/or radius OR 12 cm and $/ \mathrm{or} 6 \mathrm{~cm}$ then $B 1$	B1 B1 B1 B1 B1 B1	Continuous line that is drawn with a pair of compasses or good attempt free hand. FT their circle (including free hand circles) Mark intention to draw through the centre $\pm 2 \mathrm{~mm}$ Unambiguous line
	B1 B1 B1 B1 4	
4. (a) Evidence of square counting $\begin{gathered} 67-73 \\ 335-365 \end{gathered}$ (b) Lines Curve	M1 A1 B1 B1 B1 5	Inclusive. Inclusive. F.T. 'their $67-73$ ' $\times 5$ Unsupported answers in the range $335-365$ get all 3 marks. Condone square notation, e.g. 70^{2}, but $70^{2}=4900$ gets A0 For all 3 lines. F.T. their lines, must have opposite curvature, start at the correct place and end at the start of their top line.

2015 November Paper 2 (Calculator allowed) Foundation Tier	Marks	FINAL MARK SCHEME Comments
5 . Condone notation such as .02 p for 2 p, .20 p for 20 p etc Must give 6 coins and get one back in change Total of coins $=£ 2.94$ OR 294p $(\text { Spent }=£ 1.78 \text { OR 178p })$ $\text { Coins }=£ 1,50 p, 20 p, 5 p, 2 p, 2 p \quad(\text { Change of } 1 p)$ OR B1 for Amount left $=£ 1.16 \underline{\text { OR } £ 1.14+2 p \text { change }}$ $\text { Coins }=£ 1,10 \mathrm{p}, 5 \mathrm{p}, 1 \mathrm{p}$ Allow the use of a coin to pay that is then given back in change: $\mathbf{e . g .} 7$ coins $£ 1,50 p, 20 p, 5 p, 5 p, 2 p$ and $2 p$ which amounts to $£ 1.84$ and then gives the change as $1 p$ and 5 p . Look for (in the most part) Strand 1: For 1 mark Candidates will be expected to - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanations and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means Strand 2: For 1 mark Candidates will be expected to - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc	S1 B1 B1 B1 QWC 2 6	OR Attempt at trialling to pay total coins $>£ 1.78$ \& state change 2nd trial total coins $>£ 1.78$ \& state correct change Coins $=£ 1,50 \mathrm{p}, 20 \mathrm{p}, 5 \mathrm{p}, 2 \mathrm{p}, 2 \mathrm{p} \quad($ Change of 1 p$)$ Coins $=£ 1,10$ p, $5 \mathrm{p}, 1 \mathrm{p}$ A correct solution is awarded B4 QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar. QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar. OR Evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar. QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling.
6. (a) $\quad \begin{array}{llllllll}36 & 45 & 56 & 61 & 74 & 77 & 87 & 110\end{array}$ Median $=(135 / 2)=67.5(\mathrm{~cm})$ (b) Sum of the numbers (546) Sum/8 $\text { Mean }=68.25(\mathrm{~cm}) \underline{\text { I.S.W. }}$ (c) $\quad($ Range $=) 74(\mathrm{~cm})$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \\ \text { B1 } \\ 6 \end{gathered}$	For identifying the correct TWO middle numbers OR for arranging the 8 numbers in ascending or descending order. C.A.O. Unsupported 67.5 gets M1, A1. For attempt to add all the numbers For dividing a number in the range 436 to 656 by 8 . C.A.O.
7. (a) (i) Subtract 12 from the previous term (ii) Multiply previous term by 5 (b) (i) $1.2(0)$ (ii) $140.6(08)$ I.S.W. (c) (0) . 09 (d) 1000/68 OR 10/0.68 OR 14.(705...) He can buy 14 notebooks . Change $=1000-14 \times 68=48$ p OR $(£ 0) .48$ (e) $\frac{4}{9} \times 63$ $=28$	B1 B1 B1 B1 B1 M1 A1 B1 M1 A1 10	In part (a) if acceptable answer seen award the mark and ignore other answers. Accept subtract $12,-12$, 'goes down in 12 s ', etc B0 for $\mathrm{n}-12$, OR $-12 \mathrm{n}+110$ Accept $\times 5$ etc B0 for $\mathrm{n} \times 5$ or 5 n OR 14 notebooks cost (£)9.52, 15 cost ($£$) 10.20 (therefore) 14 OR use of $\mathbf{7 0 p} \times 14$ gets M1,A1. F.T. 1000 - 'their 14 ' $\times 68$. B0 for .48 p. Changing 4/9 to decimals or percentages will lead to approximations and not to 28 . This gets M1,A0

2015 November Paper 2 (Calculator allowed) Foundation Tier		Marks	FINAL MARK SCHEME Comments
(b) 12		B2 B2	Mark final answer. Must be an expression. B1 for either term, 2a or -b OR $2 \mathrm{a}+(-\mathrm{b})$ Final answer must be $\mathbf{1 2}$ for the $\mathbf{B 2}$. B1 for 'Add 7 to get 48' followed by B1 for 'Divide by 4 to get 12 ' Accept embedded answers.
(c) Sight of 380 or 260	Sight of (1 ap +1 pr weighs) 260 (g) OR Sight of (2 ap +1 pr weighs) $380(\mathrm{~g})$	B1	For either reading from the scales
1 apple weighs $\underline{\mathbf{3 8 0}}-260 \underline{(=\mathbf{1 2 0 (g)})}$	$2 \mathrm{ap}+2 \mathrm{pr}$ weigh 520 (g)	M1	F.T. their reading provided 'their 260 ' is between 200 and 300 exclusive, AND 'their 380 ' is between 300 and 400 exclusive
$\begin{array}{r} 1 \text { pear weighs } 260-120 \\ =140(\mathrm{~g}) \end{array}$	$\begin{gathered} 1 \text { pear weighs } 520-380 \\ =140(\mathrm{~g}) \end{gathered}$	$\mathrm{m} 1$ A1 8	Follow through 'their values for 380, 260 and 520' C.A.O. A correct solution is awarded all 4 marks
9. (a)$\underline{\mathbf{a}}$ 1278 $\underline{\mathbf{b}}$ 236.43 $\underline{\mathbf{c}}$ $11.82(15)$ $\underline{\mathbf{d}}$ $248.25(15)$ $\underline{\text { e }}$ (12.46) $260.71(15)$		B1	C.A.O.
		B1	F.T. 'their a' $\times 0.185$
		B1	F.T. 'their b' $\times 0.05$
		B1	F.T. 'their b' + 'their c'
		B1	F.T. 'their d' +12.46
(b) $260.71(15) / 3=(£) 86.90$		M1	F.T. 'their $\mathrm{e}^{\prime} / 3$
		A1	
10.(a) (£)660 (b) (£) 120 (c) Reasonable straight line of best fit		B1	
		B1	
		B1	Some points above and some points below. Do not accept if clearly joining $(4,120)$ and $(0,660)$ or corner to corner of the graph paper
(d) Negative (correlation)		B1	
(e) FT from a 'line of best fit' (reading accurate to small square) (curved line or straight line, not dot-to-dot)		B1	OR B1 for an answer between (£)260 and (£)320 inclusive only if no line of best fit or if B0 awarded in part (c)
			Reading accurate to gridline if within a small square, if shown to be on a gridline reading should be accurate
H1		5	

2015 November Paper 2 (Calculator allowed) Foundation Tier	Marks	FINAL MARK SCHEME Comments
$15 .\left(\right.$ a) $10 \mathrm{y}^{3}-15 \mathrm{y}$	B2	$\underline{\text { Must be as an expression. Mark final answer. }}$ B1 for either term correct OR 10y ${ }^{3}+(-15 y)$
(b) $20 \mathrm{~h}^{5}$	M1	A2
(c) $3<\mathrm{n}<61 / 2$ OR $3<\mathrm{n}<13 / 2$ OR $\mathrm{n}>3$ with $\mathrm{n}<61 / 2$	A1 for all 3 with at most 1 error OR any 2 correct and no errors $\mathrm{n}=4,5,6$	If no marks, award SC2 for sight of any 2 correct answers with no incorrect answer If no marks, award SC1 for sight of any 1 correct answer with no incorrect answer Accept embedded answers H7bc

PAPER 2 - HIGHER TIER

Linear GCSE Mathematics Higher Tier November 2015 Paper 2		FINAL MARK SCHEME Comments
6.(a)(i) Mid-points 10, 20, 30, 40	B1	
$10 \times 5+20 \times 10+30 \times 12+40 \times 1$	M1	FT their mid points, including bounds, provided they fall within the classes. $50+200+360+40(=650)$
Intention their $\sum \mathrm{fx} / 28$	m1	(650/28)
23(214...cm)	A1	Following correct working, however accept unsupported $23(.2 . \mathrm{cm})$ for all 4 marks.
(ii) Modal class $25 \leq \mathrm{s}<35$	B1	Accept ' 25 to 35 ' or any other unambiguous indication
(iii) Median $15 \leq \mathrm{s}<25$	B1	Accept ' 15 to 25 ' or any other unambiguous indication If neither B1 awarded in (ii) or (iii), then award SC1 for answers of 30 and 20 respectively.
(b) Explanation with understanding that heavy snowfall on (some of) the other days would raise the mean (but that the arranged data mid value could still be lower), e.g. 'the median is 9 cm , so all the snowfall greater than this can increase the mean', 'just one day with heavy snowfall can raise the mean', 'the mean is an average so on the other days snowfall was much higher'	E1	Needs to demonstrate understanding that heavy snowfall during the other half of the 28 days. Allow 'there may be other places in Terragal that have more snowfall than where Ralph was on holiday' (must refer to 'places in Terragal' Do not accept 'other areas of Terragal may be different', or 'the mean is the addition of all the snowfall' without further comment regarding 'the others days' or 'other areas of Terragal' with heavy snowfall
	7	
7. (a) $8 \mathrm{x}(\mathrm{x}-2)$	B2	B1 for correctly partially factorised, or for $8 \mathrm{x}(\mathrm{x} \ldots .$.) or $8 \mathrm{x}(\ldots$ - 2)
(b) $10 y^{3}-15 y$	B2	Must be as an expression. Mark final answer. B1 for either term correct
(c) $20 \mathrm{~h}^{5}$	B1	
	B1 6	

Linear GCSE Mathematics Higher Tier November 2015 Paper 2		FINAL MARK SCHEME Comments
8.(a)		If an error is made with $1-0.24$ or equivalent, i.e. working with e.g. uniquely 0.66 or 0.86 , penalise -1 once only
(Rowena's car depreciated value) (£) 3500×0.76^{3} or equivalent	M2	M1 for 3500×0.76 or $3500-3500 \times 0.24$ or 2660 , or allow M1 for $3500-3500 \times 0.24^{3}$, or M1 for simple depreciation $3500-3 \times 840(=£ 980)$ M1 for appreciation 3500×1.24
(£)1536(.416)	A1	CAO, but accept 1540 from correct working or a value rounding to (£) 1536
(Dafydd needs to save a total of $£ 1536(.416)-£ 100$) (£)1436(.416)	B1	FT 'their 1536' - 100 evaluated correctly provided at least M1 awarded If no marks so far due to working with $£ 3400$, then award SC3 for (£)1492.51(84) or (£)1492.52, or SC2 for 3400×0.76^{3}, or SC1 for sight of 3400×0.76 or 3400-3400 $\times 0.24$ or allow for sight of $3400-3400 \times 0.24^{3}$ or $3400-3 \times 816(=952)$
(Dafydd needs to save, per month £) $1436(.416$) $\div 36$	M1	FT 'their $1436(.416)$ ' $\div 36$, i.e. what they think the car is now worth, but do not FT for $3500 \div 36$ or $3400 \div 36$ Note: $£ 1536(.416) \div 36-(£) 100 \div 36$ is equivalent to B1, M1
(£) 40	A2	A1 for (£) $39.88 \ldots$ to (£)39.90(00 ...) FT for A2 provided rounding is necessary, otherwise maximum of FT A1 only. When rounding is necessary, accept rounding up or down to the nearest pound if number of pence is <50 An answer of $(£) 43$ is from $(£) 1536(.416) \div 36$ evaluated correctly with answer to the nearest $£$, this is awarded M2, A1, B0, then FT M1 and A2 (or A1 for (£) $42.6(\ldots$) or (£) 42.70
QWC2: Candidates will be expected to - present work clearly, with words explaining process or steps AND	$\begin{gathered} \text { QWC } \\ 2 \end{gathered}$	QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar.
- make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer		QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar
QWC1: Candidates will be expected to - present work clearly, with words explaining process or steps OR		OR evident weaknesses in organisation of material but using acceptable mathematical form, with few if any errors in spelling, punctuation and grammar.
- make few if any mistakes in mathematical form, spelling, punctuation and grammar and include units in their final answer		QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling, punctuation or grammar.

Linear GCSE Mathematics Higher Tier November 2015 Paper 2		FINAL MARK SCHEME Comments
11.(a) $\pi \times \mathrm{r}^{2}=35$	M1	
$\mathrm{r}=\sqrt{ }(35 / \pi)(=\sqrt{ } 11.13 \ldots)$	A1	
$\mathrm{r}=3.3(37 \ldots \mathrm{~m})$	A1	Allow A1 for $\mathrm{r}=3(\mathrm{~m})$ only if $3.3(37 \ldots)$ or $\sqrt{ } 11.13 \ldots$ is seen in previous working
Diameter in the range 6.67...(m) to 6.68(m)	A1	FT from 3 m gives a diameter of $6(\mathrm{~m})$ which is A0, as premature approximate
		Allow trial \& improvement: - showing substitution for r between 3.2(cm) and 3.4(cm) - calculation for r between 3.2(cm) and 3.4(cm) A1 - $r=3.3(\ldots \mathrm{~cm})$ A1 - diameter in the range $6.67 \ldots(m)$ to $6.68(m) \quad A 1$
(b) 1000 litre $=1 \mathrm{~m}^{3}$, or 1 litre $=0.001 \mathrm{~m}^{3}$, or 1000 litre $=1000000 \mathrm{~cm}^{3}$ AND $1000000 \mathrm{~cm}^{3}=1 \mathrm{~m}^{3}$, or 1 litre $=1000 \mathrm{~cm}^{3}$ AND $1 \mathrm{~m}^{3}=1000000 \mathrm{~cm}^{3}$	B1	OR equivalent for 50 litre comparisons, e.g. 50 litres $=0.05 \mathrm{~m}^{3}$
$0.05\left(\mathrm{~m}^{3}\right)$ in 60 (seconds) or $0.05 \div 60\left(\mathrm{~m}^{3} / \mathrm{s}\right)$ or $0.05 / 60$	M1	FT 'their 0.05 ' $\div 60$ provided 'their 0.05 ' $\neq 50$, i.e. not 0.83 (3..). Other sightings of digits $83(3 \ldots$) implies M1
$8.33 \times 10^{-4}\left(\mathrm{~m}^{3} / \mathrm{s}\right.$ to 3 s.f. $)$	A2	A1 for 0.000833 or 8.3×10^{-4} or $8.333(3 ..) \times 10^{-4}$ or 0.833×10^{-3} or sight of digits 833 (e.g. FT from 50000 gives $50000 \div 60=8.33 \times 10^{2}$)
		If no marks as BO, M0 with sight of 0.83(3...), then allow SC1 for an answer of 8.33×10^{-1}
	8	
12.(a) Strategy, finding area	M1	Any single area is sufficient
$0.25 \times 20+1 \times 10+1.8 \times 5+2 \times 5+0.5 \times 10$	M1	Allow 1 error in 1 of the products (Note for markers: $5+10+9+10+5$)
39 (people)	A1	CAO
(b) $2 \times 3+0.5 \times 10$	M1	
11 (people)	A1	
(c) Explanation of the first bar now being only between 10 and 20 with double the height or with height 0.5 .	E1	FT if possible from (a) Do not accept mention only that there is now no bar between 0 and 10. However, accept mention only of just double height bar between 10 and 20 Do not accept 'the frequency density is increased' without saying to what or how.

\begin{tabular}{|c|c|c|}
\hline Linear GCSE Mathematics Higher Tier November 2015 Paper 2 \& \& \begin{tabular}{l}
FINAL MARK SCHEME \\
Comments
\end{tabular} \\
\hline \begin{tabular}{l}
\[
\begin{aligned}
\& \text { 13.(a) }(x+3)(x-8) \\
\& x=-3 \text { with } x=8
\end{aligned}
\] \\
(b)
\[
\begin{aligned}
\mathrm{x} \& =\frac{-2 \pm \sqrt{ }\left(2^{2}-4 \times 5 \times-9\right)}{2 \times 5} \\
\& =\frac{-2 \pm \sqrt{ } 184}{10} \\
x \& =1.16 \text { with } \mathrm{x}=-1.56 \text { (Answer to } 2 \mathrm{dp} \text {) }
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{c}
B2 \\
B1 \\
\\
M1 \\
A1 \\
A1 \\
\\
\hline 6
\end{tabular} \& \begin{tabular}{l}
B1 for \((x-3)(x+8)\) or \(x(x-8)+3(x-8)\) or equivalent \\
Strict FT from their pair of brackets \\
FT from their pair of brackets, or from previous B1 \\
Do not accept answer only, must FT from factorising \\
Allow one error in sign or substitution, not in the formula \\
CAO \\
CAO \\
For a trial \& improvement method: \\
Trial of a value between 1 and 2 \\
AND a value between -1 and -2 \\
Correct evaluations for values either side of
\[
x=1.16 \text { with } x=-1.56 \begin{array}{cc}
\text { 1.16 AND }-1.56 \& \text { A1 } \\
(\text { Answer to } 2 d p) \& A 1
\end{array}
\]
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { 14.(a) P(plain, plain) with sight of } 5 / 20 \times 4 / 19 \text { or } \\
\& 5 / 20 \times 4 / 20 \\
\& \qquad(5 / 20 \times 4 / 19=) 20 / 380 \\
\& \text { (b) } 1-\mathrm{P}(\text { red, red } \text { or } \\
\& \mathrm{P}(\text { red, not red })+\mathrm{P}(\text { not red, red })+\mathrm{P}(\text { not red, not red }) \\
\& 1-2 / 20 \times 1 / 19 \text { or } \\
\& 2 / 20 \times 18 / 19+18 / 20 \times 2 / 19+18 / 20 \times 17 / 19 \\
\& 378 / 380
\end{aligned}
\] \& S1
B1
S1
M1
A1

5 \& | Including replacement $\text { ISW }(2 / 38=1 / 19)$ |
| :--- |
| OR equivalent. Including replacement |
| OR equivalent full method that could lead to a correct answer |
| (ISW) |
| If no marks, SC1 for 1-P(not red, not red) leading to an answer of 74/380, or |
| SCl for P(red, not red) $+P$ (not red, not red) or $P($ not red, red $)+P$ (not red, not red) leading to an answer of 342/380 |

\hline | 15. Seen or implied: linear scale factor $32 / 26(=1.23 \ldots)$ or 26/32 (= 0.8125) OR |
| :--- |
| volume scale factor $(32 / 26)^{3}(=1.8643 \ldots)$ or $(26 / 32)^{3}(=0.5363 \ldots)$ |
| Smaller volume $(26 / 32)^{3} \times 500$ OR $500 \div(32 / 26)^{3}$ $268\left(.188 . . \mathrm{cm}^{3}\right)$ | \& | S1 |
| :--- |
| M1 |
| A1 |
| 3 | \& | Accept sight of $(500 \times 32 / 26=) 615(.38 \ldots)$ or $(500 \times 26 / 32=)$ 406(.25) as evidence of linear scale factor |
| :--- |
| Accept rounded or truncated |
| Penalise premature approximation of the scale factor, e.g. linear $(32 / 26=) 1.2$, leading to $(1.2)^{3}$ becoming $1.7(\ldots)$, by awarding A0, but allowing S1 and possible M1 |

\hline | 16.(a) Correct curved graph through $\left(0^{\circ}, 1\right),\left(90^{\circ}, 0\right),\left(180^{\circ},-1\right),\left(270^{\circ}, 0\right) \&\left(360^{\circ}, 1\right)$ |
| :--- |
| (b) $128\left({ }^{\circ}\right)$ with $232\left({ }^{\circ}\right)$ | \& B1

B2

3 \& | Do not allow straight line towards $0^{\circ}, 180^{\circ}$ or 360° |
| :--- |
| B1 for sight of $128\left(.0246 . .^{\circ}\right)$ or $231.9\left(753 . .^{\circ}\right)$ or $232\left({ }^{\circ}\right)$ |

\hline
\end{tabular}

Linear GCSE Mathematics Higher Tier November 2015 Paper 2		FINAL MARK SCHEME Comments
$17.1 / 2 \times 6.7 \times 8.4 \times \sin \mathrm{A}=22.8 \quad \hat{\mathrm{~A}}=54\left(.1188 \ldots{ }^{\circ}\right)$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Or for $\hat{\mathrm{A}}=\sin ^{-1} 0.81(023 \ldots)$
$\begin{array}{r} \mathrm{DB}^{2}=6.7^{2}+8.4^{2}-2 \times 6.7 \times 8.4 \times \cos 54\left(.1188 \ldots{ }^{\circ}\right) \\ \mathrm{DB}=7(.03 . . \mathrm{cm}) \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A2 } \end{aligned}$	FT their Â provided it is $\neq 32^{\circ}, \neq 46^{\circ}, \neq 102^{\circ}, \neq 90^{\circ}$ or 22.8 Accept rounded or unrounded answers 7, 7.02 or 7.03(4) A 1 for $\mathrm{DB}^{2}=49$ to 49.4779 .. or 49.5 OR appropriate for their FT angle (Use of 78° leads to $D B^{2}=92.04 \ldots$ and $D B=9.6 \mathrm{~cm}$)
Use of $\hat{\mathrm{C}}=102^{\circ}$ or $180^{\circ}-46^{\circ}-32^{\circ}$ with DB in appropriate sine rule statement, $\frac{7(.034 \ldots)}{\sin 102^{\circ}}=\frac{\mathrm{BC}}{\sin 46^{\circ}} \quad \text { OR } \frac{7(.034 \ldots)}{\sin 102^{\circ}}=\underline{\operatorname{DC}} \sin 32^{\circ}$	M1	FT their DB provided $\neq 6.7$ or $\neq 8.4$
$\mathrm{BC}=\frac{\sin 46^{\circ} \times 7(.034 . .)}{\sin 102^{\circ}} \quad \text { OR } \quad \mathrm{DC}=\frac{\sin 32^{\circ} \times 7(.034 . .)}{\sin 102^{\circ}}$	M1	Rearranged form also implies previous M1
$\mathrm{BC}=5.1$ to 5.2(cm) AND $\mathrm{DC}=3.79$ to 3.8(1..cm)	A2	Rounded or unrounded from correct working Do not accept DC=3.7(cm) A1 for either BC or DC correct (Use of 78° initially leads to $B C=7(.06 \ldots \mathrm{~cm}$) and $D C=5.2$ (cm) or $5.19(\ldots \mathrm{~cm})$, but as M0 initially this will be B0)
Perimeter $(6.7+8.4+B C+D C=)$ $24(\mathrm{~cm})$ or $24.1(\mathrm{~cm})$ or $24.08(3 \ldots \mathrm{~cm})$	$\begin{aligned} & \text { B1 } \\ & 10 \\ & \hline \end{aligned}$	FT 15.1+their BC + their DC correctly evaluated provided all M marks awarded

WJEC
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wiec.co.uk website: www.wjec.co.uk

